161 research outputs found

    Probing fundamental physics with pulsars

    Full text link
    Pulsars provide a wealth of information about General Relativity, the equation of state of superdense matter, relativistic particle acceleration in high magnetic fields, the Galaxy's interstellar medium and magnetic field, stellar and binary evolution, celestial mechanics, planetary physics and even cosmology. The wide variety of physical applications currently being investigated through studies of radio pulsars rely on: (i) finding interesting objects to study via large-scale and targeted surveys; (ii) high-precision timing measurements which exploit their remarkable clock-like stability. We review current surveys and the principles of pulsar timing and highlight progress made in the rotating radio transients, intermittent pulsars, tests of relativity, understanding pulsar evolution, measuring neutron star masses and the pulsar timing array.Comment: 6 pages, 1 figure, to appear in the proceedings of IAU XXVII GA - JD3 - Neutron Stars: Timing in Extreme Environments XXVII IAU General Assembly, Rio de Janeiro, Brazil, 3-14 August 200

    A Study of Single Pulses in the Parkes Multibeam Pulsar Survey

    Full text link
    We reprocessed the Parkes Multibeam Pulsar Survey, searching for single pulses out to a DM of 5000 pc cm−3^{-3} with widths of up to one second. We recorded single pulses from 264 known pulsars and 14 Rotating Radio Transients. We produced amplitude distributions for each pulsar which we fit with log-normal distributions, power-law tails, and a power-law function divided by an exponential function, finding that some pulsars show a deviation from a log-normal distribution in the form of an excess of high-energy pulses. We found that a function consisting of a power-law divided by an exponential fit the distributions of most pulsars better than either log-normal or power-law functions. For pulsars that were detected in a periodicity search, we computed the ratio of their single-pulse signal-to-noise ratios to their signal-to-noise ratios from a Fourier transform and looked for correlations between this ratio and physical parameters of the pulsars. The only correlation found is the expected relationship between this ratio and the spin period. Fitting log-normal distributions to the amplitudes of pulses from RRATs showed similar behaviour for most RRATs. Here, however, there seem to be two distinct distributions of pulses, with the lower-energy distribution being consistent with noise. Pulse-energy distributions for two of the RRATS processed were consistent with those found for normal pulsars, suggesting that pulsars and RRATs have a common emission mechanism, but other factors influence the specific emission properties of each source class.Comment: 11 pages, 6 figures, 3 tables, accepted for publication in MNRA

    X-ray and γ\gamma-ray Studies of the Millisecond Pulsar and Possible X-ray Binary/Radio Pulsar Transition Object PSR J1723-2837

    Get PDF
    We present X-ray observations of the "redback" eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and γ\gamma-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a γ\gamma-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed source detection, the implied γ\gamma-ray luminosity is ≲\lesssim5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient γ\gamma-ray producing millisecond pulsars or, if the detection is spurious, the γ\gamma-ray emission pattern is not directed towards us.Comment: 10 pages, 6 figures; accepted for publication in the Astrophysical Journa

    Systematic and Stochastic Variations in Pulsar Dispersion Measures

    Get PDF
    We analyze deterministic and random temporal variations in dispersion measure (DM) from the full three-dimensional velocities of pulsars with respect to the solar system, combined with electron-density variations on a wide range of length scales. Previous treatments have largely ignored the pulsar's changing distance while favoring interpretations involving the change in sky position from transverse motion. Linear trends in pulsar DMs seen over 5-10~year timescales may signify sizable DM gradients in the interstellar medium (ISM) sampled by the changing direction of the line of sight to the pulsar. We show that motions parallel to the line of sight can also account for linear trends, for the apparent excess of DM variance over that extrapolated from scintillation measurements, and for the apparent non-Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar motions through atomic gas may produce bow-shock ionized gas that also contributes to DM variations. We discuss possible causes of periodic or quasi-periodic changes in DM, including seasonal changes in the ionosphere, annual variation of the solar elongation angle, structure in the heliosphere-ISM boundary, and substructure in the ISM. We assess the solar cycle's role on the amplitude of ionospheric and solar-wind variations. Interstellar refraction can produce cyclic timing variations from the error in transforming arrival times to the solar system barycenter. We apply our methods to DM time series and DM gradient measurements in the literature and assess consistency with a Kolmogorov medium. Finally, we discuss the implications of DM modeling in precision pulsar timing experiments.Comment: 24 pages, 17 figures, published in Ap

    No detectable radio emission from the magnetar-like pulsar in Kes 75

    Get PDF
    The rotation-powered pulsar PSR J1846-0258 in the supernova remnant Kes 75 was recently shown to have exhibited magnetar-like X-ray bursts in mid-2006. Radio emission has not yet been observed from this source, but other magnetar-like sources have exhibited transient radio emission following X-ray bursts. We report on a deep 1.9 GHz radio observation of PSR J1846-0258 with the 100-m Green Bank Telescope in late 2007 designed to search for radio pulsations or bursts from this target. We have also analyzed three shorter serendipitous 1.4 GHz radio observations of the source taken with the 64-m Parkes telescope during the 2006 bursting period. We detected no radio emission from PSR J1846-0258 in either the Green Bank or Parkes datasets. We place an upper limit of 4.9 \mu Jy on coherent pulsed emission from PSR J1846-0258 based on the 2007 November 2 observation, and an upper limit of 27 \mu Jy around the time of the X-ray bursts. Serendipitously, we observed radio pulses from the nearby RRAT J1846-02, and place a 3\sigma confidence level upper limit on its period derivative of 1.7 * 10^{-13}, implying its surface dipole magnetic field is less than 2.6 * 10^{13} G.Comment: 15 pages, 2 figures, submitted to Ap

    A Simultaneous Dual-Frequency Scintillation Arc Survey of Six Bright Canonical Pulsars Using the Upgraded Giant Metrewave Radio Telescope

    Full text link
    We use the Upgraded Giant Metrewave Radio Telescope to measure scintillation arc properties in six bright canonical pulsars with simultaneous dual frequency coverage. These observations at frequencies from 300 to 750 MHz allowed for detailed analysis of arc evolution across frequency and epoch. We perform more robust determinations of arc curvature, scattering delay, and scintillation timescale frequency-dependence, and comparison between arc curvature and pseudo-curvature than allowed by single-frequency-band-per-epoch measurements, which we find to agree with theory and previous literature. We find a strong correlation between arc asymmetry and arc curvature, which we have replicated using simulations, and attribute to a bias in the Hough transform approach to scintillation arc analysis. Possible evidence for an approximately week long timescale over which a given scattering screen dominates signal propagation was found by tracking visible scintillation arcs in each epoch in PSR J1136+1551. The inclusion of a 155 minute observation allowed us to resolve the scale of scintillation variations on short timescales, which we find to be directly tied to the amount of ISM sampled over the observation. Some of our pulsars showed either consistent or emerging asymmetries in arc curvature, indicating instances of refraction across their lines of sight. Significant features in various pulsars, such as multiple scintillation arcs in PSR J1136+1551 and flat arclets in PSR J1509+5531, that have been found in previous works, were also detected. The multiple band capability of the upgraded GMRT shows excellent promise for future pulsar scintillation work
    • …
    corecore